Space Technology Demonstrations for Gravitational-Wave Detection

W. M. Folkner

Jet Propulsion Laboratory, California Institute of Technology

LISA Technology Needs

Inertial sensors

- Test masses with noise accelerations < 3x10⁻¹⁵ m/s²/√Hz
 - > Spurious motions < 20 pm/√Hz
- Test masses must be shielded from noise forces
 - > External (solar radiation pressure, magnetic, charged particle)
 - > Spacecraft interactions (magnetic, electrostatic, gravitational)
- Spacecraft position w.r.t. must be measured and controlled
 - > Position electrostatically measured to <10 nm/√Hz
- Inertial sensor cannot be operated on Earth
- Micronewton thrusters
 - Needed to control spacecraft position to required accuracy
- Laser interferometery
 - Measure separation between test masses to 10 pm/√Hz
 - > ~One million times less sensitivity than LIGO, VIRGO, etc.
 - > But ~one million times lower frequency

LISA Technologies

Inertial sensors
Noise < 10⁻¹⁶ g
rms for 1000 s average

ONERA

Picometer interferometry
Accuracy < 1 pm
rms for 1000 s average
1 W laser

Micronewton thrusters Range 1-100 μN Noise <1 μN

Centrospazio

LISA Sensitivity

Design sensitivity for one year integration and signal-to-noise ratio of 5

Inertial Sensors

- An Inertial Sensor consists of;
 - Freely-floating test mass
 - Position measurement w.r.t housing
- Test mass must be isolated from;
 - Solar magnetic field
 - Solar radiation pressure
 - Residual gas pressure
 - Thermal radiation pressure
 - Cosmic rays
 - Spacecraft self-gravity
 - Spacecraft magnetic fields
 - Spacecraft electric fields
- Space heritage;
 - •TRIAD (Stanford/APL, 1972)
 - •GRADIO (ONERA, 1999)
 - •CHAMP (ONERA, 2000)
 - •GRACE (ONERA, 2001)
 - •GP-B (Stanford, 2000)

Stanford University

ONERA

Micronewton Thrusters

- Miniature ion thrusters
 - · Eject, accelerate droplets of fluid
 - · Cesium, indium, formamide
 - Thrust range set by solar pressure
 - Thrust 1-20 μN
 - Thrust noise <0.1 μN
 - Neutralizer needed to balance charge

Control s/c position to < 10nm

Busek Corp.

Inertial Sensor Performance

Expected Inertial Sensor Performance

Flight Demonstration Concept

- Verify absence of noise forces by comparing two freely-floating test masses
 - Laser interferometer used to measure changes in separation
- Both test masses must be shielded from external forces by a spacecraft
 - Single spacecraft can house both
- Spacecraft must fly 'drag-free'
 - Micro-thrusters used to counteract solar radiation pressure
- Spacecraft must be far from radiation and gravitational tides
 - Need high-Earth or Earth-escape orbit

Instrument Configuration

- Two inertial sensors, individual vacuum housings.
- Sensors integrated with interferometer
- 2-stage thermal isolation assembly

Flight Demonstration with ST3

Advantages;

- Saves ~\$40M for LISA test launch
- Saves ~\$20M for LISA test s/c
- Adds mass margin for ST3
- Enables more interferometer tests
 - > No delay-line
 - > Observe-on-fly

Disadvantages

- Ties schedule for ST3/LISA test
 - > Schedule is fast for LISA test
- Requires longer mission
- Requires significant funding soon

Flight Demonstration with ST3/Smart II

- ESA SMART II mission is to test technologies for LISA and for separated-spacecraft interferometry (DARWIN/IRSI)
- A possible sharing between SMART II and ST3 is being explored
 - ESA would provide two spacecraft, one with a European LISA test package
 - Second ESA spacecraft could carry a US LISA test package

Advantages

- Tests 3 s/c formation
- Better fringe visibility
- More formation modes
- Platform for LISA test
- Disadvantages
 - ESA/NASA schedule offset
 - Complex interfaces

Flight Demonstration with ST6/SMART-II

- ST6, if approved, would start Phase A studies in March 2001
- One candidate mission would satisfy LISA test needs
 - Could be partnered with ESA EMART II
 - Could have one ESA s/c, one US s/c, each with separate test packages
 - Inter-spacecraft ranging could be part of ESA package

Advantages

- Separate ESA/NASA LISA tests
- Clean interfaces
- ESA/NASA schedules closer
- Satisfies ESA formation flying
- Disadvantages
 - Subject to competition
 - Launch vehicle not identified
 - > Shared launch?
 - > Ariane 5 secondary launch?

Related Missions

Summary

- A test flight to demonstrate inertial sensor performance
 - Is highly desirable
 - Has strong support form NASA and ESA
 - Is synergistic with other flight demonstrations/science missions
 - Will probably launch in 2005/2006 time frame